Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 cis-(Cyclobutane-1,1-dicarboxylato)-bis(2-methylpyridine)platinum(II)

Ming-Jin Xie, ${ }^{\text {a }}$ Yao Yu, ${ }^{\text {b }}$ Wei-Ping Liu, ${ }^{\text {b } *}$ Shu-Qian Hou ${ }^{\text {b }}$ and Qing-Shong Ye ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Yunnan University, Kunming, People's Republic of China, and ${ }^{\mathbf{b}}$ Platinum-Based Drug Laboratory, Kunming Institute of Precious Metals, Kunming, People's Republic of China
Correspondence e-mail: xmj7193@yahoo.com.cn
Received 11 September 2007; accepted 18 September 2007
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; disorder in main residue; R factor $=0.017 ; w R$ factor $=0.044$; data-to-parameter ratio $=18.2$.

The asymmetric unit in the title compound, $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}\right)\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}$], is composed of one-half of a molecule. The complex lies on a mirror plane which contains the Pt atom and three C atoms of the cyclobutane group, the fourth C atom being disordered with respect to the mirror plane. The $\mathrm{Pt}^{\mathrm{II}}$ ion is tetracoordinated in a square-planar environment.

Related literature

For related literature, see: Ali et al. (2002); Jakuper et al. (2003); Tu et al. (2004); Zhang et al. (2002).

Experimental

Crystal data
$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=523.45$
Orthorhombic, Pnma
$a=12.7339$ (7) \AA
$b=14.5313$ (8) \AA
$c=9.7716(6) \AA$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
$T_{\text {min }}=0.237, T_{\text {max }}=0.455$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017 \quad 2$ restraints
$w R\left(F^{2}\right)=0.044$
$S=1.04$
2278 reflections
125 parameters
$V=1808.14(18) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=7.79 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.26 \times 0.22 \times 0.12 \mathrm{~mm}$

14744 measured reflections 2278 independent reflections 2031 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was financially supported by Yunnan Natural Science Foundation (grant Nos. 20032C06 and 2006C0070M) and the National Science Foundation of Yunnan University (grant No. 2005Q002A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2231).

References

Ali, M. S., Thurston, J. H., Whitmire, K. H. \& Khokhar, A. R. (2002). Polyhedron, 21, 2659-2662.
Bruker (2004). APEX2 (Version 2.1-4) and SAINT (Version 7.23A) Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jakuper, M. A., Galanski, M. \& Keppler, B. K. (2003). Rev. Physiol. Biochem. Pharmacol. 146, 1-53.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tu, C., Wu, X. F., Liu, Q., Wang, X. Y., Xu, Q. \& Guo, Z. J. (2004). Inorg. Chim. Acta, 357, 95-102.
Zhang, J. Y., Liu, Q., Duan, C., Shao, Y., Ding, J., Miao, Z., You, X.-Z. \& Guo, Z. (2002). J. Chem. Soc. Dalton Trans. pp. 591-594.

supplementary materials

cis-(Cyclobutane-1,1-dicarboxylato)bis(2-methylpyridine)platinum(II)

M.-J. Xie, Y. Yu, W.-P. Liu, S.-Q. Hou and Q.-S. Ye

Comment

Cis-diammine(1,1-cyclobutanedicarboxylato) platinum(II) (Carboplatin) is commonly used for the treatment of testicular and overian cancer as well as cervical, bladder and head and neck tumors. It has proven to be the only second-generation platinum complex commercially available worldwide at present (Jakuper et al., 2003). But the application of Carboplatin in therapy is limited by the dose-dependent nephrotoxicity and other side effects. Therefore, the search for the new potent platinum complexes possessing high antitumor activity and lack of cross-resistance is needed. The title compound is a new soluble carboplatin analogue containing an asymmetric chelating malonate anion as its carrier and anticancer tests are presently being carried out.

The asymmetric unit in the title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pt}$, is composed of half a molecule (Fig. 1). Indeed the complex is distributed around a mirror plane which contains the Platinum and the $\mathrm{C} 8, \mathrm{C} 9$ and C 11 atoms of the cyclobutane group, the fourth one, C 10 , is disordered with respect to the mirror plane. The Pt atom is coordinated in a square-pyramidal enironment (Fig. 1). The 1,1-cyclobutanedicarboxylate ligand displays similar features to those described in the literature (Tu et al.,2004; Zhang et al., 2002; Ali et al.,2002). The six-membered chelate ring built up of the $\mathrm{Pt}(\mathrm{II})$ atom and the malonate anion adopts a boat conformation and the two symetry related 2-methylpyridine liagnds are oriented perpendicular to each other.

Experimental

Potassium tetrachloroplatinate(II) $(5 \mathrm{~g}, 12 \mathrm{mmol})$ was dissolved in water $(50 \mathrm{ml})$ and $\mathrm{KI}(12 \mathrm{~g}, 72 \mathrm{mmol})$ was added. After standing in the dark for 30 min at room temperature, a solution of 2-methylpyridine ($1.08 \mathrm{~g}, 12 \mathrm{mmol}$ in 50 ml water) was added dropwise. The mixture was stirred for 4 h and the yellow precipitate of di(2-methylpyridine) PtI_{2} was filtered off. Afterwards $2.5 \mathrm{~g}(0.044 \mathrm{mmol})$ of di(2-methylpyridine) $\mathrm{PtI}_{2}, 75 \mathrm{ml}$ of water and disilver 1,1-cyclobutanedicarboxylate (1.07 $\mathrm{g}, 2.99 \mathrm{mmol}$) were stirred at $50^{\circ} \mathrm{C}$ for 72 h . The precipitate of AgI was filtered off and the filtrate was concentrated at 40 ${ }^{\circ} \mathrm{C}$ under reduced pressure to about 5 ml until a white crystalline solid of the title compound precipitate. The compound was recrystallized from water to obtain crystals suitable for X-ray analysis.

Refinement

All H atoms were initially located in a difference Fourier map but were positioned with idealized geometry and treated as riding on their parent atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), $0.96 \AA$ (methyl) and $0.97 \AA$ (methylene) and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (aromatic, methylene) and 1.5 for methyl H atoms) or $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}$ (methyl).

The C10 atom is statistically distributed with respect to the crystallographic mirror plane. It was then refined using the PART -1 instruction within SHELXL97 (Sheldrick, 1997) and C—C restraints.

supplementary materials

Figures

Fig. 1. Molecular view of the complex, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only one component of the disordered moiety is represented. H atoms have been omitted for clarity. [Symmetry code: (i) $x,-\mathrm{Y}+3 / 2, z$].

cis-(Cyclobutane-1,1-dicarboxylato)bis(2-methylpyridine)platinum(II)

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$
$M_{r}=523.45$
Orthorhombic, Pnma
Hall symbol: -P2ac2n
$a=12.7339$ (7) \AA
$b=14.5313$ (8) \AA
$c=9.7716(6) \AA$
$V=1808.14(18) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
φ and ω scans
Absorption correction: numerical
(APEX2; Bruker, 2004)
$T_{\text {min }}=0.237, T_{\text {max }}=0.455$
14744 measured reflections
$F_{000}=1008$
$D_{\mathrm{x}}=1.923 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 2278 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=7.79 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.26 \times 0.22 \times 0.12 \mathrm{~mm}$

2278 independent reflections
2031 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\max }=28.3^{\circ}$
$\theta_{\text {min }}=2.5^{\circ}$
$h=-16 \rightarrow 16$
$k=-19 \rightarrow 19$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}	Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$	sites
$w R\left(F^{2}\right)=0.044$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.027 P)^{2}+0.1067 P\right]$
$S=1.04$	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
	$(\Delta / \sigma)_{\max }=0.003$

2278 reflections

125 parameters
2 restraints
$\Delta \rho_{\max }=0.78$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.66$ e \AA^{-3}
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Pt1	$0.615174(10)$	0.7500	$0.091373(11)$	$0.02943(6)$	
N1	$0.66661(15)$	$0.64874(13)$	$-0.03283(19)$	$0.0326(4)$	
O1	$0.56091(14)$	$0.65080(11)$	$0.21436(17)$	$0.0401(4)$	
O2	$0.50259(19)$	$0.60774(15)$	$0.41509(18)$	$0.0605(6)$	
C1	$0.76953(19)$	$0.62816(18)$	$-0.0318(3)$	$0.0401(6)$	
H1	0.8138	0.6634	0.0227	0.048^{*}	
C2	$0.8127(3)$	$0.5579(2)$	$-0.1070(3)$	$0.0484(7)$	
H2	0.8839	0.5442	-0.1011	0.058^{*}	
C3	$0.7478(2)$	$0.50885(18)$	$-0.1906(3)$	$0.0547(8)$	
H3	0.7752	0.4629	-0.2464	0.066^{*}	
C4	$0.6415(2)$	$0.5272(2)$	$-0.1925(3)$	$0.0524(7)$	
H4	0.5971	0.4929	-0.2483	0.063^{*}	
C5	$0.6010(2)$	$0.5970(2)$	$-0.1110(3)$	$0.0401(6)$	
C6	$0.4857(2)$	$0.6157(2)$	$-0.1055(3)$	$0.0571(8)$	
H6A	0.4658	0.6300	-0.0132	0.086^{*}	
H6B	0.4480	0.5624	-0.1360	0.086^{*}	
H6C	0.4694	0.6669	-0.1639	0.086^{*}	
C7	$0.54870(18)$	$0.66383(16)$	$0.3446(3)$	$0.0377(5)$	
C8	$0.5967(3)$	0.7500	$0.4092(3)$	$0.0397(9)$	
C9	$0.5995(4)$	0.7500	$0.5655(4)$	$0.0626(14)$	
H9A	0.5886	0.8102	0.6059	0.075^{*}	0.50
H9B	0.5538	0.7045	0.6070	0.075^{*}	0.50
C11	$0.7208(4)$	0.7500	$0.4086(4)$	$0.0517(11)$	0.50
H11A	0.7519	0.7040	0.3492	0.062^{*}	0.50
H11B	0.7520	0.8101	0.3941	0.062^{*}	0.50
C10	$0.7137(6)$	$0.7211(7)$	$0.5593(7)$	$0.097(5)$	0.50
H10A	0.7242	0.6557	0.5735	0.117^{*}	

H10B	0.7589	0.7567	0.6191	0.117^{*}	0.50

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	$0.02763(8)$	$0.03190(8)$	$0.02875(8)$	0.000	$0.00074(4)$	0.000
N1	$0.0328(11)$	$0.0361(10)$	$0.0290(10)$	$-0.0017(8)$	$0.0011(8)$	$-0.0006(8)$
O1	$0.0460(10)$	$0.0357(9)$	$0.0385(9)$	$-0.0090(7)$	$0.0058(7)$	$0.0003(7)$
O2	$0.0720(16)$	$0.0569(13)$	$0.0527(13)$	$-0.0192(11)$	$0.0175(10)$	$0.0103(9)$
C1	$0.0373(14)$	$0.0443(14)$	$0.0389(14)$	$0.0011(10)$	$-0.0007(10)$	$-0.0031(11)$
C2	$0.0447(16)$	$0.0495(16)$	$0.0510(16)$	$0.0106(13)$	$0.0063(12)$	$-0.0044(12)$
C3	$0.067(2)$	$0.0439(16)$	$0.0532(17)$	$0.0066(14)$	$0.0063(14)$	$-0.0108(12)$
C4	$0.0647(19)$	$0.0453(16)$	$0.0472(16)$	$-0.0095(13)$	$-0.0023(13)$	$-0.0129(13)$
C5	$0.0444(16)$	$0.0387(15)$	$0.0372(14)$	$-0.0077(11)$	$-0.0014(10)$	$-0.0014(11)$
C6	$0.0415(17)$	$0.068(2)$	$0.062(2)$	$-0.0114(15)$	$-0.0108(13)$	$-0.0126(14)$
C7	$0.0335(13)$	$0.0376(13)$	$0.0420(14)$	$0.0011(10)$	$0.0043(10)$	$0.0044(11)$
C8	$0.036(2)$	$0.046(2)$	$0.036(2)$	0.000	$0.0050(13)$	0.000
C9	$0.083(4)$	$0.069(3)$	$0.035(2)$	0.000	$-0.003(2)$	0.000
C11	$0.037(2)$	$0.052(2)$	$0.066(3)$	0.000	$-0.0118(17)$	0.000
C10	$0.089(6)$	$0.140(14)$	$0.062(4)$	$0.003(5)$	$-0.032(4)$	$0.023(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Pt} 1-\mathrm{O} 1^{\text {i }}$	1.9999 (15)
$\mathrm{Pt} 1-\mathrm{O} 1$	1.9999 (15)
$\mathrm{Pt} 1-\mathrm{N} 1$	2.0167 (19)
Pt1-N1 ${ }^{\text {i }}$	2.0167 (19)
N1-C1	1.344 (3)
N1-C5	1.359 (3)
O1-C7	1.296 (3)
O2-C7	1.218 (3)
C1-C2	1.373 (4)
C1-H1	0.9300
C2-C3	1.363 (4)
C2-H2	0.9300
C3-C4	1.380 (4)
C3-H3	0.9300
C4-C5	1.389 (4)
C4-H4	0.9300
C5-C6	1.493 (4)
$\mathrm{O1}-\mathrm{Pt} 1-\mathrm{O} 1$	92.24 (9)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{N} 1$	178.71 (7)
$\mathrm{O} 1-\mathrm{Pt} 1-\mathrm{N} 1$	87.02 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{N} 1^{\mathrm{i}}$	87.02 (8)
O1-Pt1-N1 ${ }^{\text {i }}$	178.71 (7)
$\mathrm{N} 1-\mathrm{Pt1}-\mathrm{N} 1^{\text {i }}$	93.71 (11)

$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9600
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9600
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9600
$\mathrm{C} 7-\mathrm{C} 8$	$1.530(3)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.528(5)$
$\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$1.530(3)$
$\mathrm{C} 8-\mathrm{C} 11$	$1.580(6)$
$\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$1.514(8)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.514(8)$
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9700
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9700
$\mathrm{C} 11-\mathrm{C} 10^{\mathrm{i}}$	$1.533(7)$
$\mathrm{C} 11-\mathrm{C} 10$	$1.533(7)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9700
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9700
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9700
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9700
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$118.5(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$114.97(19)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$114.97(19)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$109.8(3)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 11$	$88.9(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11$	$113.47(19)$

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$118.7(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pt} 1$	$118.33(16)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Pt} 1$	$122.83(17)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{Pt} 1$	$121.76(15)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$123.5(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	118.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$117.8(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	121.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.2(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.1
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.1
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 4$	$119.9(3)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$118.9(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.3(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{H} 6 A-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	109.5
H6B-C6-H6C	109.5
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$	$121.0(2)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	$120.4(2)$
Sym	

C7- ${ }^{\text {i }}$ - $8-\mathrm{C} 11$	113.47 (19)
C10 ${ }^{\text {i }}$ C9- C 10	32.2 (8)
C10 ${ }^{\text {i }}$ - $\mathrm{C} 9-\mathrm{C} 8$	89.0 (4)
C10-C9-C8	89.0 (4)
C10 - ${ }^{\text {i }}$ - $9-\mathrm{H} 9 \mathrm{~A}$	84.5
C10-C9-H9A	113.8
C8-C9-H9A	113.8
C10 ${ }^{\text {i }}$ - $\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	141.4
C10-C9-H9B	113.8
C8-C9-H9B	113.8
H9A-C9-H9B	111.0
C10- ${ }^{\text {i }} 11-\mathrm{C} 10$	31.8 (8)
$\mathrm{C} 10^{\mathrm{i}}-\mathrm{C} 11-\mathrm{C} 8$	86.4 (4)
C10-C11-C8	86.4 (4)
$\mathrm{C} 10^{\text {i }}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	142.0
C10-C11-H11A	114.2
C8-C11-H11A	114.2
C10 ${ }^{\text {i }}$ - $\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	85.3
C10-C11-H11B	114.2
C8-C11-H11B	114.2
H11A-C11-H11B	111.4
C9-C10-C11	91.1 (4)
C9-C10-H10A	113.4
C11-C10-H10A	113.4
C9-C10-H10B	113.4
C11-C10-H10B	113.4
H10A-C10-H10B	110.7

Symmetry codes: (i) $x,-y+3 / 2, z$.

supplementary materials

Fig. 1

